25 #include <queso/GslVector.h> 
   26 #include <queso/GslMatrix.h> 
   27 #include <queso/VectorSet.h> 
   28 #include <queso/VectorSpace.h> 
   29 #include <queso/GaussianLikelihoodFullCovarianceRandomCoefficient.h> 
   33 template<
class V, 
class M>
 
   36     const V & observations, 
const M & covariance)
 
   38     m_covariance(covariance)
 
   40   if (covariance.numRowsLocal() != observations.sizeLocal()) {
 
   41     queso_error_msg(
"Covariance matrix not same size as observation vector");
 
   45 template<
class V, 
class M>
 
   50 template<
class V, 
class M>
 
   53     const V & domainVector, 
const V * domainDirection, V * gradVector,
 
   54     M * hessianMatrix, V * hessianEffect)
 const 
   56   return std::exp(this->lnValue(domainVector, domainDirection, gradVector,
 
   57         hessianMatrix, hessianEffect));
 
   60 template<
class V, 
class M>
 
   63     const V & domainVector, 
const V * domainDirection, V * gradVector,
 
   64     M * hessianMatrix, V * hessianEffect)
 const 
   66   V modelOutput(this->m_observations, 0, 0);  
 
   67   V weightedMisfit(this->m_observations, 0, 0);  
 
   69   this->evaluateModel(domainVector, domainDirection, modelOutput, gradVector,
 
   70       hessianMatrix, hessianEffect);
 
   73   modelOutput -= this->m_observations;
 
   76   this->m_covariance.invertMultiply(modelOutput, weightedMisfit);
 
   79   modelOutput *= weightedMisfit;
 
   82   double norm2_squared = modelOutput.sumOfComponents();
 
   85   double deter_cov = this->m_covariance.determinant();
 
   87   deter_cov = std::sqrt(deter_cov);
 
   92   double cov_coeff = domainVector[domainVector.sizeLocal()-1];
 
   93   cov_coeff = std::pow(std::sqrt(cov_coeff), this->m_observations.sizeLocal());
 
   95   return -0.5 * norm2_squared / cov_coeff - std::log(cov_coeff * deter_cov);
 
virtual ~GaussianLikelihoodFullCovarianceRandomCoefficient()
Destructor. 
 
A class that represents a Gaussian likelihood with full covariance and random coefficient. 
 
GaussianLikelihoodFullCovarianceRandomCoefficient(const char *prefix, const VectorSet< V, M > &domainSet, const V &observations, const M &covariance)
Default constructor. 
 
virtual double lnValue(const V &domainVector, const V *domainDirection, V *gradVector, M *hessianMatrix, V *hessianEffect) const 
Logarithm of the value of the scalar function. 
 
A templated class for handling sets. 
 
#define queso_error_msg(msg)
 
virtual double actualValue(const V &domainVector, const V *domainDirection, V *gradVector, M *hessianMatrix, V *hessianEffect) const 
Actual value of the scalar function. 
 
Base class for canned Gaussian likelihoods.