25 #include <queso/1DQuadrature.h> 
   33   double minDomainValue,
 
   34   double maxDomainValue,
 
   37   m_minDomainValue(minDomainValue),
 
   38   m_maxDomainValue(maxDomainValue),
 
   72 const std::vector<double>&
 
   79 const std::vector<double>&
 
   90   double minDomainValue,
 
   91   double maxDomainValue,
 
   92   const std::vector<double>& positions,
 
   93   const std::vector<double>& weights)
 
  119   double       minDomainValue,
 
  120   double       maxDomainValue,
 
  122   bool         densityIsNormalized)
 
  162       m_weights  [0] =  (322.-13.*sqrt(70.))/900.; 
 
  163       m_weights  [1] =  (322.+13.*sqrt(70.))/900.; 
 
  165       m_weights  [3] =  (322.+13.*sqrt(70.))/900.;
 
  166       m_weights  [4] =  (322.-13.*sqrt(70.))/900.;
 
  176       m_weights  [0] =  0.1713244923791703450402961;
 
  177       m_weights  [1] =  0.3607615730481386075698335;
 
  178       m_weights  [2] =  0.4679139345726910473898703;
 
  179       m_weights  [3] =  0.4679139345726910473898703;
 
  180       m_weights  [4] =  0.3607615730481386075698335;
 
  181       m_weights  [5] =  0.1713244923791703450402961;
 
  192       m_weights  [0] =  0.1294849661688696932706114;
 
  193       m_weights  [1] =  0.2797053914892766679014678;
 
  194       m_weights  [2] =  0.3818300505051189449503698;
 
  195       m_weights  [3] =  0.4179591836734693877551020;
 
  196       m_weights  [4] =  0.3818300505051189449503698;
 
  197       m_weights  [5] =  0.2797053914892766679014678;
 
  198       m_weights  [6] =  0.1294849661688696932706114;
 
  230       m_weights  [ 0] =  0.0556685671161736664827537;
 
  231       m_weights  [ 1] =  0.1255803694649046246346943;
 
  232       m_weights  [ 2] =  0.1862902109277342514260976;
 
  233       m_weights  [ 3] =  0.2331937645919904799185237;
 
  234       m_weights  [ 4] =  0.2628045445102466621806889;
 
  235       m_weights  [ 5] =  0.2729250867779006307144835;
 
  236       m_weights  [ 6] =  0.2628045445102466621806889;
 
  237       m_weights  [ 7] =  0.2331937645919904799185237;
 
  238       m_weights  [ 8] =  0.1862902109277342514260976;
 
  239       m_weights  [ 9] =  0.1255803694649046246346943;
 
  240       m_weights  [10] =  0.0556685671161736664827537;
 
  256       m_weights  [ 0] =  0.0471753363865118271946160;
 
  257       m_weights  [ 1] =  0.1069393259953184309602547;
 
  258       m_weights  [ 2] =  0.1600783285433462263346525;
 
  259       m_weights  [ 3] =  0.2031674267230659217490645;
 
  260       m_weights  [ 4] =  0.2334925365383548087608499;
 
  261       m_weights  [ 5] =  0.2491470458134027850005624;
 
  262       m_weights  [ 6] =  0.2491470458134027850005624;
 
  263       m_weights  [ 7] =  0.2334925365383548087608499;
 
  264       m_weights  [ 8] =  0.2031674267230659217490645;
 
  265       m_weights  [ 9] =  0.1600783285433462263346525;
 
  266       m_weights  [10] =  0.1069393259953184309602547;
 
  267       m_weights  [11] =  0.0471753363865118271946160;
 
  284       m_weights  [ 0] =  0.0404840047653158795200216;
 
  285       m_weights  [ 1] =  0.0921214998377284479144218;
 
  286       m_weights  [ 2] =  0.1388735102197872384636018;
 
  287       m_weights  [ 3] =  0.1781459807619457382800467;
 
  288       m_weights  [ 4] =  0.2078160475368885023125232;
 
  289       m_weights  [ 5] =  0.2262831802628972384120902;
 
  290       m_weights  [ 6] =  0.2325515532308739101945895;
 
  291       m_weights  [ 7] =  0.2262831802628972384120902;
 
  292       m_weights  [ 8] =  0.2078160475368885023125232;
 
  293       m_weights  [ 9] =  0.1781459807619457382800467;
 
  294       m_weights  [10] =  0.1388735102197872384636018;
 
  295       m_weights  [11] =  0.0921214998377284479144218;
 
  296       m_weights  [12] =  0.0404840047653158795200216;
 
  346     14 ±0.1080549487073436620662447 0.2152638534631577901958764
 
  347     ±0.3191123689278897604356718 0.2051984637212956039659241
 
  348     ±0.5152486363581540919652907 0.1855383974779378137417166
 
  349     ±0.6872929048116854701480198 0.1572031671581935345696019
 
  350     ±0.8272013150697649931897947 0.1215185706879031846894148
 
  351     ±0.9284348836635735173363911 0.0801580871597602098056333
 
  352     ±0.9862838086968123388415973 0.0351194603317518630318329
 
  356       m_weights  [ 0] =  0.0241483028685479319601100;
 
  357       m_weights  [ 1] =  0.0554595293739872011294402;
 
  358       m_weights  [ 2] =  0.0850361483171791808835354;
 
  359       m_weights  [ 3] =  0.1118838471934039710947884;
 
  360       m_weights  [ 4] =  0.1351363684685254732863200;
 
  361       m_weights  [ 5] =  0.1540457610768102880814316;
 
  362       m_weights  [ 6] =  0.1680041021564500445099707;
 
  363       m_weights  [ 7] =  0.1765627053669926463252710;
 
  364       m_weights  [ 8] =  0.1794464703562065254582656;
 
  365       m_weights  [ 9] =  0.1765627053669926463252710;
 
  366       m_weights  [10] =  0.1680041021564500445099707;
 
  367       m_weights  [11] =  0.1540457610768102880814316;
 
  368       m_weights  [12] =  0.1351363684685254732863200;
 
  369       m_weights  [13] =  0.1118838471934039710947884;
 
  370       m_weights  [14] =  0.0850361483171791808835354;
 
  371       m_weights  [15] =  0.0554595293739872011294402;
 
  372       m_weights  [16] =  0.0241483028685479319601100;
 
  394       std::cerr << 
"In UniformLegendre1DQuadrature::constructor()" 
  402   for (
unsigned int j = 0; j < 
m_positions.size(); ++j) {
 
  404     if (densityIsNormalized) {
 
  462       m_weights  [0] =  sqrt(M_PI)/4./(3.-sqrt(6.));
 
  463       m_weights  [1] =  sqrt(M_PI)/4./(3.+sqrt(6.));
 
  464       m_weights  [2] =  sqrt(M_PI)/4./(3.+sqrt(6.));
 
  465       m_weights  [3] =  sqrt(M_PI)/4./(3.-sqrt(6.));
 
  632       std::cerr << 
"In GaussianHermite1DQuadrature::constructor()" 
  638   for (
unsigned int j = 0; j < (
m_order+1); ++j) {
 
  658   double       minDomainValue,
 
  659   double       maxDomainValue,
 
  675   for (
unsigned int j = 0; j < 
m_positions.size(); ++j) {
 
  695   double       minDomainValue,
 
  696   double       maxDomainValue,
 
  706   for (
unsigned int i = 0; i < n; ++i) {
 
  707     double angle = M_PI*((double)(i+1))/((
double)(n+1));
 
  708     double cosValue = cos(angle);
 
  709     double sinValue = sin(angle);
 
  711     m_weights[i] = ( M_PI/((double)(n+1)) )*sinValue*sinValue;
 
  715   for (
unsigned int j = 0; j < 
m_positions.size(); ++j) {
 
std::vector< double > m_positions
 
GaussianHermite1DQuadrature(double mean, double stddev, unsigned int order)
Default constructor. 
 
Generic1DQuadrature(double minDomainValue, double maxDomainValue, const std::vector< double > &positions, const std::vector< double > &weights)
Default constructor. 
 
virtual ~Base1DQuadrature()
Virtual destructor. 
 
UniformLegendre1DQuadrature(double minDomainValue, double maxDomainValue, unsigned int order, bool densityIsNormalized)
Default constructor. 
 
std::vector< double > m_weights
 
~WignerInverseChebyshev1st1DQuadrature()
Destructor. 
 
double maxDomainValue() const 
Returns the maximum value of the domain of the (one-dimensional) function. 
 
Base1DQuadrature(double minDomainValue, double maxDomainValue, unsigned int order)
Default constructor. 
 
#define queso_require_equal_to_msg(expr1, expr2, msg)
 
#define queso_require_less_msg(expr1, expr2, msg)
 
const std::vector< double > & weights() const 
Array of the weights used in the numerical integration. 
 
void dumbRoutine() const 
A bogus method. 
 
void dumbRoutine() const 
A bogus method. 
 
Base class for one-dimensional quadrature rules (numerical integration of functions). 
 
void dumbRoutine() const 
A bogus method. 
 
~GaussianHermite1DQuadrature()
Destructor. 
 
~WignerChebyshev2nd1DQuadrature()
Destructor. 
 
~UniformLegendre1DQuadrature()
Destructor. 
 
#define queso_require_not_equal_to_msg(expr1, expr2, msg)
 
WignerChebyshev2nd1DQuadrature(double minDomainValue, double maxDomainValue, unsigned int order)
Default constructor. 
 
WignerInverseChebyshev1st1DQuadrature(double minDomainValue, double maxDomainValue, unsigned int order)
TODO: Default constructor. 
 
const std::vector< double > & positions() const 
Array of the positions for the numerical integration. 
 
void dumbRoutine() const 
Bogus routine. 
 
#define queso_error_msg(msg)
 
void dumbRoutine() const 
Bogus routine. 
 
unsigned int order() const 
Returns the order of the quadrature rule. 
 
double minDomainValue() const 
Returns the minimum value of the domain of the (one-dimensional) function. 
 
~Generic1DQuadrature()
Destructor.