| 
    queso-0.56.0
    
   | 
 
Class for Legendre-Gauss quadrature rule for one-dimensional functions. More...
#include <1DQuadrature.h>


Public Member Functions | |
Constructor/Destructor methods  | |
| UniformLegendre1DQuadrature (double minDomainValue, double maxDomainValue, unsigned int order, bool densityIsNormalized) | |
| Default constructor.  More... | |
| ~UniformLegendre1DQuadrature () | |
| Destructor.  More... | |
Mathematical methods  | |
| void | dumbRoutine () const | 
| A bogus method.  More... | |
  Public Member Functions inherited from QUESO::Base1DQuadrature | |
| Base1DQuadrature (double minDomainValue, double maxDomainValue, unsigned int order) | |
| Default constructor.  More... | |
| virtual | ~Base1DQuadrature () | 
| Virtual destructor.  More... | |
| double | minDomainValue () const | 
| Returns the minimum value of the domain of the (one-dimensional) function.  More... | |
| double | maxDomainValue () const | 
| Returns the maximum value of the domain of the (one-dimensional) function.  More... | |
| unsigned int | order () const | 
| Returns the order of the quadrature rule.  More... | |
| const std::vector< double > & | positions () const | 
| Array of the positions for the numerical integration.  More... | |
| const std::vector< double > & | weights () const | 
| Array of the weights used in the numerical integration.  More... | |
Additional Inherited Members | |
  Protected Attributes inherited from QUESO::Base1DQuadrature | |
| double | m_minDomainValue | 
| double | m_maxDomainValue | 
| unsigned int | m_order | 
| std::vector< double > | m_positions | 
| std::vector< double > | m_weights | 
Class for Legendre-Gauss quadrature rule for one-dimensional functions.
In a general Gaussian quadrature rule, an definite integral of 
 is first approximated over the interval [-1,1] by a polynomial approximable function 
 and a known weighting function 
: 
 Those are then approximated by a sum of function values at specified points 
 multiplied by some weights 
: 
 In the case of Gauss-Legendre quadrature, the weighting function 
, so we can approximate an integral of 
 with: 
 The abscissas for quadrature order 
 are given by the roots of the Legendre polynomials 
, which occur symmetrically about 0. The weights are 
Several authors give a table of abscissas and weights:
![]()  | ![]()  |     | 
|---|---|---|
| 2 |    |     | 
| 3 |    |     | 
   |     | |
| 4 |    |     | 
   |     | |
| 5 |    |     | 
   |     | |
   |     | 
Definition at line 162 of file 1DQuadrature.h.
| QUESO::UniformLegendre1DQuadrature::UniformLegendre1DQuadrature | ( | double | minDomainValue, | 
| double | maxDomainValue, | ||
| unsigned int | order, | ||
| bool | densityIsNormalized | ||
| ) | 
Default constructor.
Constructs a Gaussian-Legendre quadrature of order order, in the interval [minDomainValue,maxDomainValue]. Valid values for the order of the quadrature rule are: 1-7, 10-12, 16. This method scales the abscissas (positions) of the quadrature from the interval [-1,1] to [minDomainValue,maxDomainValue], and the parameter densityIsNormalized determines whether the weights should be scaled as well. 
Definition at line 118 of file 1DQuadrature.C.
References QUESO::Base1DQuadrature::m_maxDomainValue, QUESO::Base1DQuadrature::m_minDomainValue, QUESO::Base1DQuadrature::m_order, QUESO::Base1DQuadrature::m_positions, QUESO::Base1DQuadrature::m_weights, and queso_error_msg.
| QUESO::UniformLegendre1DQuadrature::~UniformLegendre1DQuadrature | ( | ) | 
      
  | 
  virtual |