28 #include <queso/StatisticalInverseProblemOptions.h> 
   29 #include <queso/MetropolisHastingsSG.h> 
   30 #include <queso/MLSampling.h> 
   31 #include <queso/InstantiateIntersection.h> 
   32 #include <queso/VectorRealizer.h> 
   33 #include <queso/SequentialVectorRealizer.h> 
   34 #include <queso/VectorRV.h> 
   35 #include <queso/ScalarFunction.h> 
   36 #include <queso/GPMSA.h> 
   83 template <
class P_V = GslVector, 
class P_M = GslMatrix>
 
  159                                         const P_V&                    initialValues,
 
  160                                         const P_M*                    initialProposalCovMatrix);
 
  208   void print(std::ostream& os) 
const;
 
  238 #ifdef UQ_ALSO_COMPUTE_MDFS_WITHOUT_KDE 
Class to accommodate arrays of one-dimensional grid. 
 
BaseVectorSequence< P_V, P_M > * m_chain
 
void solveWithBayesMetropolisHastings(const MhOptionsValues *alternativeOptionsValues, const P_V &initialValues, const P_M *initialProposalCovMatrix)
Solves the problem via Bayes formula and a Metropolis-Hastings algorithm. 
 
friend std::ostream & operator<<(std::ostream &os, const StatisticalInverseProblem< P_V, P_M > &obj)
 
MLSampling< P_V, P_M > * m_mlSampler
 
This templated class represents a Statistical Inverse Problem. 
 
void seedWithMAPEstimator()
Seeds the chain with the result of a deterministic optimisation. 
 
This class provides options for the Metropolis-Hastings generator of samples if no input file is avai...
 
StatisticalInverseProblem(const char *prefix, const SipOptionsValues *alternativeOptionsValues, const BaseVectorRV< P_V, P_M > &priorRv, const BaseScalarFunction< P_V, P_M > &likelihoodFunction, GenericVectorRV< P_V, P_M > &postRv)
Constructor. 
 
const SipOptionsValues * m_optionsObj
 
BaseVectorCdf< P_V, P_M > * m_subSolutionCdf
 
const BaseVectorRV< P_V, P_M > & m_priorRv
 
const BaseVectorSequence< P_V, P_M > & chain() const 
Returns the MCMC chain; access to private attribute m_chain. 
 
const ScalarSequence< double > & logTargetValues() const 
Returns log target values; access to private attribute m_logTargetValues. 
 
const BaseEnvironment & m_env
 
const BaseVectorRV< P_V, P_M > & priorRv() const 
Returns the Prior RV; access to private attribute m_priorRv. 
 
const ScalarSequence< double > & logLikelihoodValues() const 
Returns log likelihood values; access to private attribute m_logLikelihoodValues. ...
 
BaseJointPdf< P_V, P_M > * m_solutionPdf
 
MetropolisHastingsSG< P_V, P_M > * m_mhSeqGenerator
 
bool m_seedWithMAPEstimator
 
const BaseScalarFunction< P_V, P_M > & m_likelihoodFunction
 
const MetropolisHastingsSG< P_V, P_M > & sequenceGenerator() const 
Return the underlying MetropolisHastingSG object. 
 
ScalarSequence< double > * m_logLikelihoodValues
 
This class provides options for a Statistical Inverse Problem if no input file is available...
 
This (virtual) class sets up the environment underlying the use of the QUESO library by an executable...
 
void print(std::ostream &os) const 
TODO: Prints the sequence. 
 
A templated class that represents a Metropolis-Hastings generator of samples. 
 
Class to accommodate arrays of one-dimensional tables. 
 
~StatisticalInverseProblem()
Destructor. 
 
VectorSet< P_V, P_M > * m_solutionDomain
 
bool m_userDidNotProvideOptions
 
const GenericVectorRV< P_V, P_M > & postRv() const 
Returns the Posterior RV; access to private attribute m_postrRv. 
 
BaseVectorRealizer< P_V, P_M > * m_solutionRealizer
 
void solveWithBayesMLSampling()
Solves with Bayes Multi-Level (ML) sampling. 
 
double meanLogLikelihood() const 
Returns the mean of the logarithm value of the likelihood. Related to ML. 
 
BaseVectorMdf< P_V, P_M > * m_subSolutionMdf
 
ScalarSequence< double > * m_logTargetValues
 
double logEvidence() const 
Returns the logarithm value of the evidence. Related to ML. 
 
GenericVectorRV< P_V, P_M > & m_postRv
 
bool computeSolutionFlag() const 
Whether or not compute the solution. 
 
A templated class that represents a Multilevel generator of samples.