queso-0.57.1
|
Class for first type Chebyshev-Gauss quadrature rule for one-dimensional functions. More...
#include <1DQuadrature.h>
Public Member Functions | |
Constructor/Destructor methods | |
WignerInverseChebyshev1st1DQuadrature (double minDomainValue, double maxDomainValue, unsigned int order) | |
TODO: Default constructor. More... | |
~WignerInverseChebyshev1st1DQuadrature () | |
Destructor. More... | |
Public Member Functions inherited from QUESO::Base1DQuadrature | |
Base1DQuadrature (double minDomainValue, double maxDomainValue, unsigned int order) | |
Default constructor. More... | |
virtual | ~Base1DQuadrature ()=0 |
Pure virtual destructor, forcing this to be an abstract object. More... | |
double | minDomainValue () const |
Returns the minimum value of the domain of the (one-dimensional) function. More... | |
double | maxDomainValue () const |
Returns the maximum value of the domain of the (one-dimensional) function. More... | |
unsigned int | order () const |
Returns the order of the quadrature rule. More... | |
const std::vector< double > & | positions () const |
Array of the positions for the numerical integration. More... | |
Public Member Functions inherited from QUESO::BaseQuadrature | |
BaseQuadrature () | |
virtual | ~BaseQuadrature ()=0 |
Pure virtual destructor, forcing this to be an abstract object. More... | |
const std::vector< double > & | weights () const |
Array of the weights used in the numerical integration. More... | |
Additional Inherited Members | |
Protected Attributes inherited from QUESO::Base1DQuadrature | |
double | m_minDomainValue |
double | m_maxDomainValue |
unsigned int | m_order |
std::vector< double > | m_positions |
Protected Attributes inherited from QUESO::BaseQuadrature | |
std::vector< double > | m_weights |
Class for first type Chebyshev-Gauss quadrature rule for one-dimensional functions.
Chebyshev-Gauss quadrature, also called Chebyshev Type 1 quadrature, is a Gaussian quadrature over the interval [-1,1] with weighting function \( W(x)=\frac{1}{\sqrt{1-x^2}}\).
The abscissas for quadrature order \( n \) are given by the roots of the Chebyshev polynomial of the first kind \( T_n(x) \), which occur symmetrically about 0.
The abscissas are given explicitly by \( x_i=\cos[\frac{(2i-1)\pi}{2n}]\) and the weights are \( w_i=\frac{\pi}{n}. \)
Definition at line 232 of file 1DQuadrature.h.
QUESO::WignerInverseChebyshev1st1DQuadrature::WignerInverseChebyshev1st1DQuadrature | ( | double | minDomainValue, |
double | maxDomainValue, | ||
unsigned int | order | ||
) |
TODO: Default constructor.
order
, in the interval [minDomainValue,maxDomainValue]
. This method scales the the abscissas (positions) of the quadrature from the interval [-1,1] to [minDomainValue,maxDomainValue]
. Definition at line 622 of file 1DQuadrature.C.
References QUESO::Base1DQuadrature::m_maxDomainValue, QUESO::Base1DQuadrature::m_minDomainValue, QUESO::Base1DQuadrature::m_order, QUESO::Base1DQuadrature::m_positions, and QUESO::BaseQuadrature::m_weights.
QUESO::WignerInverseChebyshev1st1DQuadrature::~WignerInverseChebyshev1st1DQuadrature | ( | ) |